Effect of Growth Temperature on the Structural and Electrical Properties of ZrO2 Films Fabricated by Atomic Layer Deposition Using a CpZr[N(CH3)2]3/C7H8 Cocktail Precursor

نویسندگان

  • Jong-Ki An
  • Nak-Kwan Chung
  • Jin-Tae Kim
  • Sung-Ho Hahm
  • Geunsu Lee
  • Sung Bo Lee
  • Taehoon Lee
  • In-Sung Park
  • Ju-Young Yun
چکیده

The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO₂) dielectric thin films that were fabricated using a CpZr[N(CH₃)₂]₃/C₇H₈ cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO₂ films grown at temperatures from 250 to 350 °C were characterized. Stoichiometric ZrO₂ films formed at 250-350 °C with an atomic ratio of O to Zr of 1.8-1.9 and a low content of carbon impurities. The film formed at 300 °C was predominantly the tetragonal crystalline phase, whereas that formed at 350 °C was a mixture of tetragonal and monoclinic phases. Electrical properties, such as capacitance, leakage current, and voltage linearity of TiN/ZrO₂/TiN capacitors fabricated using the thin ZrO₂ films grown at different temperatures were compared capacitor applications. The ZrO₂ film grown at 300 °C exhibited low impurity content, predominantly tetragonal crystalline structure, a high dielectric permittivity of 38.3, a low leakage current of below 10-7 A/cm² at 2 V, and low-voltage linearity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

Effect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate

ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...

متن کامل

Deposition and characterization of SnO2:Sb thin films fabricated by the spray pyrolysis method

In this study, thin films of transparent semiconductor tin oxide doped with antimony impurities on the glass substrates with different concentrations of antimony that have been prepared using spray pyrolysis method. The effects of different concentration of antimony on the structural, optical, and electrical properties of the thin films were investigated. Prepared layers were characterized by X...

متن کامل

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

Atomic Layer Deposition of Praseodymium Aluminum Oxide for Electrical Applications

Praseodymium aluminum oxide (PAO) thin films were grown by atomic layer deposition (ALD) from a new precursor, tris(N,N′-diisopropylacetamidinato) praseodymium, (Pr(amd)3), trimethylaluminum (TMA), and water. Smooth, amorphous films having varying compositions of the general formula PrxAl2–xO3 were deposited on HF-last silicon and analyzed for physical and electrical characteristics. The films ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018